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1. Objectives

The objective of this project is to understand the basic physics of rapid penetration
into granular materials in general, and sand in particular. The primary approach is
to visualize the in situ response of granular media by using a combination of highu
speed photography and DIC (digital image correlation). A key aspect of this approach
is use of transparent soil surrogates that mimic the behavior of natural sand when
penetrated. Optical transparency is obtained by using transparent particles
saturated by an index-matching fluid. In order to obtain quantitative physical data a
number of new experimental techniques needed to be developed. New data
produced as result of this project are being used to formulate improved physical
models for penetration.

2. Status of Effort

The project began in June 2010, and has now been brought to a conclusion, except
for a few publications that are in the process of being prepared for submission.
Initially the project was carried on jointly at in the Civil Engineering Department of
NYU Poly (Prof. Iskander) and at the Institute for Advanced Technology at the
University of Texas at Austin (co-PI Dr. Bless). In July 2012, the IAT facilities began
a phased shutdown, and Dr. Bless transferred to NYU Poly. Experiments and
analysis are continuing at NYU Poly, but the experiments at IAT came to a
conclusion when the laboratory shut down in December 2012.

Many new experimental techniques were developed in the course of this effort.
Measurements of the resisting stress for soil penetration have been obtained with
unprecedented precision and over an unprecedented wide range of impact variables.
New transparent surrogates that better mimic the high strain rate behavior of sand
have been developed. New DIC analysis techniques have been developed. New
ways to visualized in situ movements in sand during penetration have been devised,
and have been demonstrated for static and dynamic penetration.

This project has supported four PhD students (three of which have not yet
graduated) and two masters students, both of which have received their degrees.
There have been 18 publications in journals and conference proceedings, plus one
book which has a 2015 publication date. There have also been four presentations at
U.S. Army and U.S. Air Force Research Laboratories. In addition there 3 published
Masters thesis and PhD dissertations and 3 to follow. There are also 6 journal
publication in various states of progress.
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3. Accomplishments

Note: Citations in this section refer to the Publications section.

3.1 New Experimental Techniques

Accomplishments on this project fall into two categories: development of new
experimental techniques for study of the physics of penetration, and the
data/implications that have resulted from these experiments. First we present
descriptions of the new techniques.

3.1.1New Impact Facilities

Study of penetration into sand is best carried out in a vertical range, in order to
accommodate the gradual increase in the strength of sand with depth. Consequently,
we established vertical ranges at NYU and IAT. The NYU range can be used for
velocities up to 250 m/s, and shoots a 10-mm projectile and the IAT range is capable
of velocities twice that high and shoots a 14-mm projectile. Both ranges are
designed to fire into dry or liquid-saturated materials, and both used compressed
gas (air or helium) as the accelerating medium. Figure 1 illustrates the ranges. Both
of these ranges employed air guns and breeches specifically designed for this
project. The IAT facility is described in Peden et al, 2013; NYU facility is described
in Cave etal, 2014. The IAT launcher is now at NYU, but it is not mounted.

Breech

Barrel

Fig. 1. Vertical impact facilities at NYU (left) and IAT (right)
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3.1.2.New Measurements of Deceleration with PDV

IAT realized that its PDV probe could be used to measure deceleration in sand. In
the initial proof of principle experiments a horizontal range was used, and the
projectile was a .50 AP bullet. Results are shown in Figure 2 and described in Peden
etal 2013.

Subsequently, a pair of PDV probes was mounted onto the muzzle of the new
vertical range at [IAT. It was found that the new PDV technique provided sub-m/s
resolution for projectile motion. The technique was also able to observe penetration
to depths exceeding 150 mm. The PDV technique was described in Peden et al 2014.
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Fig. 2 Early PDV experiments, showing velocity vs time during embedment of AP
bullets into sand, showing jacket stripping followed by period of constant dV/dx.

3.1.3 New Transparent Soil Surrogates

Past work with transparent soil simulants had used silica gel with an index-matched
liquid. Early PDV experiments showed that the penetration resistance of that
material was much less than sand. A better material was desired. The silica gel was
replaced by ground fused quartz. The fused quartz was index-matched with two
different liquids - a sucrose solution or a mineral oil.
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Triaxial tests were performed on all these materials and behavior was a reasonable
facsimile to that of natural soils. That development is described in Guzman et al,
2013, 2014a. Examples of stress-strain curves are provided in Figure 3. Along with
the development of new materials, considerable effort was put into technique
development to maximize transparency. It was found that most commercially-
available fused quartz apparently would not wet adequately, perhaps due to small
particles adhered to the grain surfaces. Pluviation rate and fluid depth were all
found to be very important in obtaining optimum transparency. Discussion of new
sample preparation techniques can be found in Chen et al, 2014.
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Fig. 3 Triaxial data for dry and the new sucrose-saturated fused quartz
(RD=relative density).

3.1.4 Advances in high speed visualization techniques

It was realized that a higher resolution, higher framing rate high-speed camera
would be necessary to resolve meso-scale motions during projectile penetration.
After a thorough review of the technical requirements and evaluation of available
equipment, we purchased a NAC HX5. The camera acquisition was supplemented
with purchase of an optical table, special lighting and a suite of lenses suitable for
taking both backlit pictures and laser illuminated pictures with our transparent soil
models. It was then realized that a higher power laser and better beam-spreading
optics would also be necessary, and both were acquired. A description of the new
optical setup is provided in Omidvar et al. 2015a.

With the aid of the new high-speed camera, it was realized that we could now obtain
displacement time information at high enough resolution and framing rate to double
differentiate and obtain acceleration. This data could then be used to supplement
the PDV data, which did not extend below about 50 m/s.
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For this purpose long rods made from aluminum were used, with various nose
shapes. Marks were added to the sides of the penetrator that were visible before
complete embedment. In addition, a tail was added that would be visible above the
surface of the target even after the penetrator was fully embedded. An image of one
of these projectiles is shown in Fig. 4. The results of the measurements of
deceleration using both the PDV and high speed photography are presented below.
The experiments and results are described in Omidvar et al 2014b,c and 20154, b.

Track markers
using high speed
camera

Fig. 4. Projectile designed to measure deceleration using high speed camera and
opaque targets.

3.1.5 Advances in DIC techniques

There was significant progress both in DIC analysis and DIC model technology.

A new open-source program was development to carry out DIC analysis. Features
were added to find the centers of grains and compute Lagrangian trajectories as
well as incremental displacements. The new techniques were first applied to
examine quasi-static penetration in a 2-D geometry. This allowed us to work out the
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analysis technique without the complication of transparent targets. The results
were remarkably well-resolved displacement fields in sand penetration. Sample
results are shown in Fig. 5. The analysis method is presented in Omidvar et al.
2014d
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Fig. 5 Computed rotations and strains from 2mm (incremental) penetration into
unconfined loose Ottawa sand (a) rigid body rotation, (b) maximum natural shear
strain, and (c) volumetric strain in a 2-D quasi-static penetration, computing using
new DIC analysis.

In trials it was found that the laser speckle technique that had been successful for
quasi-static penetration at low penetration velocities in silica gel, presented
difficulties for high speed penetration in fused quartz, because the reflection from
the translucent cavity created very large gradients in illumination. In response, a
completely new technique was conceived and developed. This technique involved
embedding a thin layer of dyed particles in the plane of penetration within the
transparent soil bed. A series of tests were conducted to determine the best areal
density of particles. Images were binarized prior to DIC processing. New DIC
procedures were calibrated by using digitally-displaced pairs of images. Several
different DIC algorithms were evaluated, and zero-mean normalized sum of squared
differences combined with multi-pass interrogation, multi-grid interrogation and
subpixel estimation was identified as most appropriate for this application. New
algorithms were also added to compute Lagrangian kinematics. These
developments are described in Chen et al 2014, Omidvar et al 2015a.

Using this technique, we were able to obtain images during penetration that could
be analyzed to yield displacement and velocity fields in the region of interest.
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Figure 6 shows the disturbances in this plane created by a penetrating rod projectile,
along with the displacement field in the transparent soil target.
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Fig. 6. Example of incremental displacement field around a conical nose 9-mm
diameter aluminum projectile with an initial velocity of 14 m/s (from Chen et al,
2014)

3.2. Cavity Dynamics

Observations with the high-speed camera revealed that the penetrator is
surrounded by an opaque cavity. The dynamics of this apparent cavity are
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discussed in Omidvar 2015a and Guzman 2015. Examples of cavity appearance are
shown in Figure 7. After analyzing numerous images as well as from experiments in
which the projectile was shot along a transparent wall, it was concluded that void is
created by dilation of the material around the cavity. Some of the void is then filled
with air, creating a permanent opaque region around the cavity, while the outer part
is filled by inward flow of pore fluid, which causes the apparent cavity to shrink in
size as the penetrator comes to rest.

Figure 7. Apparent cavity around a penetrating the center of a sucrose-fused quartz
target at 100 m/s(from Guzman et al, 2015).

3.3. Measurements of penetration resistance

In our initial work, we characterized the penetration resistance of various materials
by measuring the total depth of penetration of spheres [Bless et al 2011, Guzman et
al 2015].

However, the parameter of greatest interest for understanding the physics of
penetration is the penetration resistance. This is a property of the target medium.
It is the stress with which the target resists penetration and also the stress
experienced by the penetrator. It is computed from the deceleration of the
penetrator. The deceleration times the mass gives the force. The force divided by
the cross section area gives the average stress.

Qualitatively, quite a lot can be learned by comparing measurements of velocity vs
penetration depth for different materials. The PDV gives velocity directly. The high
speed camera provides displacement times and a single differentiation gives
velocity.

For the measurements of velocity histories, projectiles were either spheres or rods
with hemispherical or conical shaped noses. 14 mm spheres were launched with
the IAT facility, and 10-mm diameter rods L/D=10 and spheres with the NYU
launcher. Spherical projectiles were made of steel, while the rods were made of
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aluminum or steel; both were sufficiently hard that no projectile deformation
occurred as a result of impact and penetration. Data were collected for loose and
dense sand and quartz, saturated with oil or water. Impact velocities were 79 to
302 m/s.

Ideally, stress and velocity do not depend on scale for geometrically-similar objects
and rate-independent materials in which gravitational forces can be neglected
[Omidvar et al 2014a]. Assuming that the interaction of a penetrator with a soil
mass during penetration only occurs along the nose, stress as a function of velocity
should also be expected to be the same for spheres and hemispherical nosed rods.
These principles can be used to combine our experiments with spheres and rods at
two different diameters.

The results of these experiments are described in detail in Peden et al 2014 and
Omidvar et al 2014b, 2015b. The outcome of selected tests for velocity as a
function of time is shown in Fig 8. Resistance to penetration is proportional to the
slopes of the V(t) curves, or deceleration, as described further below. It can be seen
that increasing density increases penetration resistance. At high velocities, sand has
a greater penetration resistance than ground quartz, but that reverses at low
velocity. It can be seen that for sand there appears to be at least two different
penetration regimes, separated by a critical velocity V. falling in the range of 70-100
m/s. The existence of the separate velocity regimes is more pronounced in dense
sand compared to loose sand.

300
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50
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Fig 8 Data for spheres (upper) and rods (lower) penetrating Ottawa sand and
crushed fused quartz (from Omidvar et al 2014b)

Further trends are discernable when the velocity data are differentiated to give
acceleration. Penetration resistance (e.g. stress) as a function of velocity is plotted
in Fig 9. At high velocity, the penetration resistance varies from about 130 MPa to
65 MPa, depending on the material. Interestingly, there appears to be a crossover
below about 100 m/s where the penetration resistance in dense sand becomes less
than fused quartz. For dense materials, there appears to be a third regime, where
deceleration is nearly constant and equal to approximately 1 MPa. Note a constant
deceleration leads to an infinite slope in dV/dx as V approaches zero.
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Fig 9 Penetration resistance as a function of velocity from Omidvar et al 2014b.

Penetration resistance is often considered to be a function of velocity squared.
Frequently, a quadratic drag coefficient, Cp, is defined from the relationship
F=%pCpAV?, where p is density. The validity of this model is checked by computing
effective values of Cp. Cp is nearly constant for these materials for V>100 m/s. For
dense sand, it appears to have a local maximum at about 100 m/s. The ratio of drag
coefficients for loose and dry sand is also much larger than their density ratio, which
suggests that Cp is not simply due to momentum transfer between the sand and the
projectile. At low velocity, Cp diverges because the penetration resistance becomes
almost independent of velocity, implying that Cp~ 1/V2. See Omidvar et al 2014b for
more details.
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To investigate the stopping force of a moving projectile, seismic earth pressure
theory is being adapted to compute the stopping force. The early and necessary
step was to develop a closed form method for including small amounts of cohesion
into the seismic earth pressure formulation. The developed formulation is
described in Iskander et al (2013a-c)

Overall, the dependence of resisting stress on velocity is consistent with a Poncelet
formulation, stress = AV2 + R. The first term is commonly associated with inertia,
although, as pointed out in [Bless et al, 2014], frictional stresses caused by pressure
also increases as V2 increases. The Poncelet form explains why penetration
resistance is proportional to V2 at high velocities, but is nearly constant at low
velocities.

It is clear from our data that there are several distinct regimes for penetration
resistance in sand. Different meso-scale phenomena must dominate the penetration
resistance in these regions, as discussed in Omidvar et al 2014b and Omidvar et al
2015b. Immediately after impact formation of shock waves, embedment, and stress
release to the free surface all affect the deceleration. After the impact transient a
steady state penetration regime occurs. For steady penetration at elevated
velocities, the effective nose shape changes and the extent of material connected to
force chains emanating from the projectile decreases. As the projectile is brought to
rest, there is a critical velocity that depends on density below which the resistance
becomes velocity independent. This suggests that a bearing stress analysis should
be invoked. Indeed recent experiments on transparent soils verify the existence of a
roughly hemispherical region of shear stress that is several times the diameter of a
slowly penetrating projectile, as explained in the following section.

3.4. Mesoscale dynamics of penetration resistance

Fully 3D penetration was examined using the embedded plane technique coupled
with the new DIC analysis procedures. An example of cumulative displacement
profiles are various times is provided in Figure 10.
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penetration, along a horizontal profile 6-diameters into the target. 9-mm rod
striking at 20 m/s. From Omidvar et al 2015b.

Plots of non-affine and shear deformation have made it clear that a false nose forms
in front of the penetrator. The nose has a conical shape and its form is almost
independent of the original nose of the penetrator. Movement of soil around the
penetrator is downward below and upward above. Modeling the displacement will
require spherical cavity expansion; the simpler solutions for cylindrical cavity
expansion will not be suitable. The “zone of influence” of a penetrating projectile is
about six diameters.

4. Other Scholarly Activities

Two review articles were prepared on this contract. Both appeared in the
International Journal of Impact Engineering and have received numerous citations
(Omdivar et al 2013, 2014a). The first was concerned with high strain rate
properties of sand, and the second treated high speed penetration.
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A book is in preparation with the working title “Visualization of Rapid Penetration
in Granular Materials.” The book is edited by the co-PIs of this project. Chapters
written by the editors include an introduction, a review of dynamic behavior of
granular materials, a review of penetration mechanics of granular materials, and a
review and results of transparent soil techniques. Other chapters have been
contributed by experts in this field, including DTRA investigators John Borg, Wayne
Chen, Dayakar Penumadu, Stephen Wally, Jose Andrade, Wolfgang Losert, William
Proud, and John Behringer. The book will be published by Springer in 2015.

A parallel effort on the behavior of sand under uniaxial dynamic loading and triaxial
high strain rate loading is underway. Early results are available in Baamer et al
2015.

A workshop was held at NYU on the mechanics of particulate materials in May 2014.
It was for investigators located in the greater New York area and included
participation by NYU Soft Matter Group, Yale University, New Jersey Institute of
Technology, and the City College of New York. These workshops will be conducted
on a semi-annual schedule.

During the course of this program seminars were presented for other DoD
investigators, including the U.S. Army Research Laboratory, the U.S. Army
Armaments Development and Engineering Center (ARDEC), and the Air Force
Research Laboratory. There were substantive discussions for future collaborations
with investigators from all of these laboratories, plus the Norwegian Defense
Ministry, and we anticipate that these will lead to coordinated research activities
over the next year.

5. Personnel Supported

Magued Iskander, PI, NYU Poly

Stephan Bless, Co-PI, IAT/NYU Poly

Ivan Guzman, PhD student, Civil Engineering, NYU Poly (graduated June 2014,
thesis: Guzman 2014b)

Mehdi Omidvar, PhD student, Civil Engineering, NYU Poly

Bobby Peden, MS student, Engineering Mechanics, UT-Austin (graduated Dec 2012)
Zhibo Chen, PhD student, Civil Engineering, NYU Poly

Three additional students are supported at NYU Poly through the National Science
Foundations Graduate STEM Fellows in K-12 Education (GK-12) program (Iskander,
Co-PI). The following GK-12 fellows spend 60% of their time on this project:
Andrew Cave, MSc student, Civil Engineering, NYU Poly (graduated August 2013)
Stan Roslyakov, MSc student Civil Engineering, NYU Poly (graduated June 2014;
thesis: Rosylakov 2014)

Eduardo Suescun, PhD student, Civil Engineering, NYU Poly
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